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2.1  Introduction

Biological innovation is an important driver of productivity growth in 
the agricultural sector (Olmstead and Rhode 2008). This is especially so in 
the dairy sector, where milk yield has grown 3–4 percent per year during the 
past century; 50 percent of this growth is typically attributed to improve-
ment in livestock genetics (Pryce and Veerkamp 2001). However, growth 
can be overattributed to genetic improvement when models ignore the fact 
that dairy farmers select genetics based on their farm’s returns to a given 
type of genetics. This is because in the dairy sector, the vast majority of 
“experimentation” undertaken to identify high-performing genetics takes 
place in nonexperimental conditions. Starting in 1908, the US Department 
of Agriculture (USDA) initiated a program, in partnership with land grant 
universities and local associations of dairy farmers, to measure and record 
animal-level performance (CDCB 2017). This partnership, which eventually 
came to be known as the Dairy Herd Improvement (DHI) program, contin-
ues to this day. Data from commercial dairy herds that participate in the DHI 
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program (roughly half of all US dairy herds) are used to estimate the “genetic 
merit” of individual male dairy cattle (sires). Specifically, USDA scientists 
use regression models to identify the impact of a sire on the performance 
of its offspring. Because of these nonexperimental conditions, these public 
estimates of sire productivity can contain both the quality of the genetics 
and the skill of the farmer in selecting them to the right environment. With-
out understanding the contribution of farmer management and selection 
to productivity, productivity growth in the dairy sector may be mistakenly 
attributed to the work of breeders instead of to both breeders and farmers.

Our work decomposes total productivity change on Wisconsin dairy 
farms due to genetics into separate effects for genetic improvement and 
endogenous selection. Using data from a large sample of Wisconsin dairy 
farms and national-level data on dairy sire rankings, we develop and esti-
mate a model that accounts for selection behavior in the animal’s production 
function. We find that selection accounts for as much as 75 percent of the 
total productivity improvement in fat and protein yield in dairy cows. Our 
results provide evidence for positive assortative matching, whereby farmers 
who adopt above-average yield genetics also perform better than average for 
their chosen genetics. Further, we find that management behavior accounts 
for a significant portion of within-herd cow-level heterogeneity in genetic 
choice, suggesting that, contrary to previous evidence, farmers manage at 
the animal level and not solely at the herd level; this implies that previous 
regression models controlling only for herd-level variation do not adequately 
control for selection bias in the production function. Overall, our results 
indicate that a large portion of productivity growth in dairy farming can 
be explained by farmers’ ability to identify and select genetics that are well 
suited to their production environment—not solely the quality of the genet-
ics they choose.

Using on-farm data to calculate the genetic merit of different sires, thus 
far the engine of  genetic progress in the dairy industry, runs the risk of 
entangling the management savvy of dairy farmers with the quality of the 
genetics. Artificial insemination (AI) technologies, widely adopted begin-
ning in the 1960s, expanded opportunities to track and identify the per-
formance of sires. Modern AI technologies permit a single sire to produce 
hundreds of thousands of offspring, and each female offspring (birthed on 
the farm of a DHI program participant) contributes new sire evaluation 
data, improving estimates of genetic merit. Genetic merit in turn strongly 
influences the market price AI companies receive for their genetic material. 
However, the very thing that makes dairy unique also makes isolating the 
contribution of genetics tricky. Research by economists on technology adop-
tion has shown that productivity gains can be overattributed to technology 
when there is “positive assortative matching,” meaning the very ones that 
benefit the most from technology are the ones who will adopt it. Hybrid 
seeds, for example, were adopted into their most productive environments in 
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the United States (Griliches 1957) as well as in Kenya (Suri 2011). Similarly, 
technologies such as fertilizer are often applied by farmers who have the 
highest returns from applying it (Foltz, Aldana, and Laris 2014).

Our work modifies the canonical modeling framework used by quantita-
tive geneticists for determining genetic merit by accounting for the selection 
behavior of dairy farmers. Our research bridges two scientific domains, both 
indebted to the seminal work of Sewall Wright, that diverged early in the 
20th century in their approaches to explaining the contribution of genetics 
in the farm production function. Using a control function approach, we find 
that the average returns to the adoption of high-yield genetics on dairy farms 
are as much as 75 percent lower after accounting for confounding factors. 
We find evidence of positive assortative matching at the cow level and the 
herd level, suggesting that dairy farmers manage their herds at the level of 
individual cows. Our work makes a novel contribution to the literature on 
technology adoption by investigating a level of detail in selection behavior 
that is previously unexplored in the agricultural sector.

We start with the idea that farmers select genetics based on their ex ante 
returns to the technology, which will cause them to “match” sire genetics to 
cows in a specific way. We assume further that some of the factors affecting 
match quality are observed by farmers but not by researchers. Using the 
framework of the correlated random coefficient (CRC) model, we explore 
the effect of this selection behavior on returns to production traits in dairy 
cattle and test whether correcting for selection behavior affects the estima-
tion of the average effect. We use random variation in country-wide genetic 
evaluations as an instrument to identify the effect of choosing dairy sires 
with high predicted transmitting ability (PTA) indices for fat and protein 
yield in the cow’s production function, and we use the residual from the 
first stage to identify the heterogeneity in the effect. We find that the average 
return from increasing the index one unit, which is a one-unit increase in 
pounds of fat or protein production, is .6 and .4 for fat and protein without 
controlling for selection behavior. These estimates drop to .15 and .18 after 
controlling for selection behavior, which means that as much 75 percent 
of the return to high-yield genetics is explained by this matching behavior. 
Finally, we find that the heterogeneity in returns is over both farms and 
animals; this implies the high productivity gains are being driven by animal-
level matching and not just farm-level matching. This changes the narrative 
of farm productivity in the dairy industry quite drastically: instead of the 
triumph of animal breeders and scientists alone, it is growth accomplished 
by a partnership between farmers and breeders.

2.2  Related Literature

Though seldom pointed out, the estimation of breeding values in quan-
titative genetics and production function estimation in economics share a 
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common history. The roots of both can be traced back to Sewall Wright, 
who pioneered work in population genetics, paving the way for the field of 
modern quantitative genetics (Gianola and Rosa 2015). Wright also concep-
tualized the notion of “path analysis,” which later evolved to be known as 
“instrumental variables,” and applied it to supply and demand systems as 
well as simultaneous equation models of commodity prices (Wright 1928; 
Wright 1925). From this common origin, economics and quantitative genet-
ics diverged in point of focus with respect to estimating the following equa-
tion:

(1) y = Zμ + Xβ + ε,

where y is the output (e.g., butterfat production of a dairy cow or yield of a 
strain of maize), Z is an incidence matrix of genetic technologies or types, 
X is a matrix of “environment” covariates unrelated to genetics, and ε is the 
unexplained component of y.

In quantitative genetics, the parameters β are modeled as fixed, but the 
parameter μ is treated as the outcome of a genetic process and thus consid-
ered a random variable with a covariance matrix mapping all the relation-
ships among genotypes. Nowhere has this genetic model developed quite 
the importance it has in animal breeding as a result of the work of C. R. 
Henderson (1953, 1973). Prior to Henderson’s work, there was no widely 
used method for attributing the performance of  different livestock to its 
parents. The Henderson mixed model (HMM), still used in the US national 
DHI program, models breeding values as draws from the random variable 
μ (Henderson 1975).

The HMM has become integral to the dairy genetics industry because 
estimates of μ for each sire, ˆ , strongly influence market prices for dairy 
genetics. PTA, which is ˆ / 2, is roughly interpreted as the value that a sire 
has for a particular trait y, which is predicted to be “transmitted” to the off-
spring (Van Vleck 1987). The national DHI program produces PTA values 
for a wide variety of traits including milk yield, fat yield, fertility, longev-
ity, and “conformance” (elements of body structure such as udder size and 
height). Once published, these values influence adoption decisions, which 
then result in new data that feed back into the DHI program as raw data 
to create breeding values for new sires and to update estimates for breeding 
values of existing sires. Building from Sewall Wright, the HMM has become 
an important source of genetic progress for the dairy industry.

The field of  economics developed in parallel to Henderson’s work but 
focused on a different set of estimation issues with respect to equation (1). 
In particular, the production function literature in economics has centered 
on the assumptions needed to identify estimate μ. If  the adoption of cer-
tain genetics is associated with unobserved components of y, this means 
Cov(Z,ε) ≠ 0, and standard regression approaches yield biased estimates of μ.  
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This bias was more generally referred to by Mundlak (1961) as “manage-
ment bias,” defined as the presence of unobserved management decisions (or 
conditions of the decision environment) that influence input choice by farm-
ers (genetic selection in this context). Griliches (1957) specifically suggested 
in the case of hybrid corn that genetic technology was historically adopted 
into the environment where it was the most profitable. Solutions to this 
problem have evolved from the simple fixed effects approach of Mundlak 
(1961) to invoking the wisdom of Sewall Wright and using exogenous varia-
tion to identify structural parameters of  production functions (Griliches 
and Mairesse 1995).

More recently, labor economists have developed new frameworks for 
thinking about this identification issue. The Roy model (Roy 1951) posited 
that occupation decisions, much like technology adoption decisions, are not 
chosen randomly; instead, they are generated from behavior that takes into 
consideration ex ante idiosyncratic returns that are difficult to measure. This 
implies that measuring the returns to some decision on an outcome, such as 
the effect of the adoption of technology on firm output, is subject to a “selec-
tion bias” that must be dealt with in something like equation (1) (Heckman 
and Vytlacil 1998). A similar logic can be applied to the choice of genet-
ics, since farmers likely observe or know something ex ante, un observed to 
researchers, and affecting relative returns across relevant genetic profiles. 
Suri (2011) formalized the link between labor economics and production 
function estimation by using the Roy model to study selection bias in tech-
nology adoption. Her study found that farmers in Kenya adopted hybrid 
maize if  their personal unobserved return was high, suggesting “positive 
assortative matching.” This has in turn helped spur a growing literature on 
quantifying the heterogeneous returns to agricultural technology adoption 
in other contexts (Foltz, Aldana, and Laris 2014; Michler et al. 2019; Zeitlin 
et al. 2010).

Our analysis circles back to an empirical question that has been studied 
for nearly 100 years: How do we evaluate the performance of animal genetics 
from observational data? We unite two divergent fields of study, economics 
and quantitative genetics, by bringing the insights and theory of economic 
analysis to the wealth of data on dairy animal performance and genetics 
and its associated modeling approaches. Returning to the basic structure of 
the HMM, we focus on estimating the effects of the genetic indices, PTAs, 
for production traits in dairy cattle and whether estimation suffers from 
selection bias. If  PTAs are affected by selection behavior, this indicates that 
part of dairy farm productivity usually attributed to genetic progress should 
also be attributed to farmer skill at matching genetics to their environments.

In the next section, we provide a theoretical framework for thinking about 
heterogeneous returns to dairy genetics and how their effect on productivity 
can be investigated using Wooldridge’s (2015) CRC model.
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2.3  Theory and Methodology

To begin, consider the case where choosing genetics is equivalent to choos-
ing to increase or decrease a single trait by purchasing a sire with a particular 
PTA value. Every sire can be described as a vector of PTA index values for 
various traits, and in this case, we can think of genetic selection as the choice 
of a vector of index values. In reality, choosing a sire is a discrete decision, 
as the farmer faces some choice set of  sires from various AI companies. 
We assume in what follows that the space of PTAs is “dense enough” that 
a farmer can choose any level of the trait they want from their choice set 
independently of other traits. We further assume this decision is only based 
on the trait itself  and not on the sire’s identity or on the AI company that 
is offering it for sale.

Studying adoption via a continuous variable is preferable to the discrete 
approach in this case because it is not known which sires are in the farmer’s 
choice set. There are more than 10,000 unique sires in our data, and many 
more are actually available to farmers. Future analysis of the space of sires 
may be able to find a reduced dimensionality representation suitable for 
discrete choice analysis. As a first attempt, we study only the adoption of 
the traits via the PTA index to be able to apply a wider range of econometric 
tools.

2.3.1  Theoretical Framing

The following simple model demonstrates the role of farm- and animal-
level heterogeneity in estimating the average returns to genetic investments 
via a continuous index. Unlike other input decisions, the decision to invest 
in genetics by choosing a certain sire happens three years before the animal 
starts producing. Assume that there is only one trait, z, which the producer 
has to choose three years before the cow begins production to maximize ex 
ante expected return:

maxz (z,x,v) wz,

where x and v are observable and unobservable management at the farm 
level,  is expected lifetime profit, and w is the price of purchasing one more 
unit of a trait.

In this model, the choice of z is only affected by farm-level heterogeneity, 
v and x. This is the level at which heterogeneity is usually analyzed based 
on the notion that management decisions operate at the level of an entire 
farm (Mundlak 1961; Suri 2011). What the above does not consider is that 
the characteristics of  the mate—that is, the animal that is bred with the 
sire—should also affect returns to z.

Call these unobserved animal-level characteristics u. We can modify the 
above model only slightly to show why these characteristics are important. 
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Instead of z affecting  directly, it operates indirectly through a transmission 
function f(z,u), which takes the traits of the father, or “sire” (z), and the traits 
of the mother, or “dam” (u), and maps to a new trait value, z′:

 maxz (z ,x,v) wz

s.t. z = f (z,u).

Now the optimal choice of z depends on the current period price that is 
to be paid versus the expected increase in profit weighted by how well the 
trait transmits. Adding this transmission function implies that unobserved 
heterogeneity affecting the adoption of z operates at the farm and animal 
levels. This is an important distinction and departure from the assumptions 
of both economic and animal science models of the returns to adoption. 
Economic models of the effect of technology adoption consider heterogene-
ity at the firm or farm level due to the assumption that confounding variation 
is from management behavior affecting all plots and animals. Animal science 
models refer to confounding variation at the animal level as “preferential 
treatment” and generally only control for farm-level effects because the lit-
erature does not find substantive evidence of animal-level decision-making 
that would bias evaluations (Graham, Smith, and Gibson 1991; Tierney 
and Schaeffer 1994).

Despite the lack of attention in the literature, animal-level heterogeneity 
can play its own part in biasing evaluations. If  the manager observes com-
ponents of u that are unobserved in data, then he or she may invest z with 
animals where the return is highest. Our next step is to investigate how the 
existence of unobserved u will affect our empirical evaluations of the returns 
to z in a production function.

2.3.2  Empirical Model

In data, we observe farms j and cows i during time period t. The PTA 
value of the sire chosen for an animal, zij, is time invariant. Using the above 
framework, we assume that there are animal-level (uij) and farm-level (vj) 
“match quality” components that affect return to adoption of zij. Assume 
further that the total return is linearly separable, such that the total return 
is . Define this payoff as relative to some average expected return  so that 
uij and vj are the farm’s known deviation from this average, ij = uij + vj. The 
returns to zij for a given animal i and farm j are thus ij = + ij.

Heterogeneity in the production function manifests in the coefficients 
for zij :

yijt = ijzij + Xijt + ijt.

Assuming a constant slope to identify  has the following effect on the equa-
tion:
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 yijt = ( + ij)zij + Xijt + ijt

= zij + Xijt + ( ijzij + ijt)

= zij + Xijt + ijt.

Because ij is unobserved match quality, then ordinary least squares will 
not identify an unbiased . It is biased because the variable return to a trait 

ijzij is in the error term so that E(zij ξijt) ≠ 0. Instrumental variables will also 
not identify  because anything correlated with z must be correlated with ξ 
(Cornelissen et al. 2016).

Our identification strategy in this chapter uses instead the control function 
method and its specific approach to random coefficients, the CRC model. 
With this approach, we approximate input demand with a linear function 
of observed covariates plus an excluded variable and use the residual from 
the approximation to proxy for match quality in the production function. 
Wooldridge (2015) spells out two main conditions for the control function 
method to identify  and uncover heterogeneity in the effect of a trait. Defin-
ing ηij as the residual term from a linear approximation of trait demand for 
zij , the two conditions for the CRC model are as follows:

A1: E( ijt | ij) = ij

A2: E( ij | ij) = ij

These are both strict assumptions about how informative the residual 
ηij is in capturing bias and match quality. A1 is a standard assumption for 
control function methods and says that selection bias takes a particular 
form: the conditional expectation of unobserved components of output is 
linear in ηij . A2 says that the heterogeneous slope coefficient defined across 
cows must be proportional to the input demand residual ηij . The unobserved 
components to technology adoption must include ij if  the manager con-
siders their ex ante returns when choosing zij , but this assumption restricts 
their relationship to be proportional. Using A2, we can use ηij interacted 
with zij to proxy for an estimate of ij . Either of these assumptions can be 
relaxed to be nonlinear, but explicit functional forms must be given so that 
we know how to include η in the production function. In our analysis, we 
maintain the linear forms.

We also need an exogenous shifter of zij that is uncorrelated with εijt. Our 
instrument is the difference between the sire’s PTA at the time it was chosen 
and its PTA value at its next evaluation four months after the adoption date 
(t′): zij = zij

t zij.1 PTAs for every sire are updated by the Council on Dairy 
Cattle Breeding (CDCB) every four months using herd testing data from 

1. Special thanks to our discussant, Paul Scott, for this suggestion.
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around the country. The change in PTA from one evaluation to the next 
Δzij is linearly related to zij and so is a relevant predictor, but the size of the 
deviation has to do with the performance of the sire’s daughters all across 
the country. This deviation is likely unrelated to unobserved production εijt 
because it is based on the performance of other offspring of the sire before 
εijt is ever realized. It is also unlikely that the updates happening right after 
the use of the genetics will somehow influence future management of that 
offspring; if  this were the case, the PTA value of that sire at the time the off-
spring ij starts producing would be the more actionable information rather 
than the intermediate updates. For these reasons, we believe Δzij satisfies 
the exclusion restriction needed for an instrument. Our approach shares 
similarities to the control function approaches of  Levinsohn and Petrin 
(2003) and Olley and Pakes (1996), which also use dynamic input lags as an 
exogenous source of variation to identify production function parameters.

Using A1 and A2 and the instrument Δzij, we can adjust the production 
function for the bias resulting from heterogeneous returns. Defining ˆ ijt as 
the estimated residual from the first-stage input demand, we now write our 
empirical model as two equations:

 zij = 0 + zij + 0Xijt + ijt

yijt = 1 + zij + ˆ ijt + ˆ ijt zij + 1Xijt + ijt×

• yijt: dairy cow performance for butterfat/protein in a given lactation
• zij: value of  PTA butterfat/protein of  the sire chosen at the time of 

adoption
• Δzij: deviation in trait value in the next updated evaluation
• Xijt: time-varying management decisions affecting y (a full list can be 

found in appendix A)
• ηijt: input demand residual

Our main research question has to do with the parameters , ρ, and ψ.  
The hypothesis of “perfect transmission” of a trait is that  = 1, so a one-unit 
increase in PTA causes a one-unit increase in the offspring’s performance 
(Kearney et al. 2004). How much this parameter differs from one before 
and after our bias correction indicates whether unobserved management 
decisions affect the average return to a trait in our sample. If  ρ is statistically 
different than zero, this rejects the null hypothesis that the models with and 
without the correction are equivalent (Wooldridge 2015).

Finally, ψ indicates the relationship between match quality and returns 
to z. If  ψ > 0, then cows matched with a sire that has higher-than-expected 
PTA will also have a higher marginal return to PTA in their production 
function. This is consistent with the “positive assortative matching” story, 
which is that farmers adopt traits that work particularly well on their farms.
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2.3.3  Heterogeneity Distribution

An output of  the above model is an estimate of  μij, ˆ ij = + ˆ ijt .2 
Assuming our theoretical framework from before, this estimate contains 
both μij and vj. The farm-specific component vj has been the focus of most 
studies in economics and is controlled for in animal science using fixed effects 
(termed “contemporary groups” in the animal science literature). However, 
we may also be interested in how much of the distribution in returns is driven 
by the animal-specific component uij . If  there are heterogeneous returns at 
the animal level, then this means that the returns to the adoption of genet-
ics are diverse even within a given farm environment. It also implies that 
sire evaluation models using farm fixed effects do not completely control 
for confounding factors and that there is evidence of managers matching 
specific genetics to specific animals, which could bias estimates of the return 
to genetics.

After estimating the parameters , ρ, and ψ, we estimate the distribution 
ˆ ij using the CRC model with three different specifications: no fixed effects, 
herd fixed effects, and herd-by-time fixed effects. The first specification esti-
mates a distribution that contains both uij and vj, and the second nets out 
vj. The third specification mimics the fixed effects strategy of many genetic 
evaluation models, which use a herd fixed effect interacted with the time of 
the observation to soak up dynamic management decisions affecting the 
returns to genetics.

2.4  Data

As described above, the market for dairy sires makes heavy use of CDCB 
evaluations, which are calculated from DHI data. In addition to milk yield 
and somatic cell count, the DHI program tracks the number of times per 
day each cow is milked (usually two, sometimes three), their calving and 
birth dates, and their “lactation number” (the number of lactation cycles 
a cow has been through at a given point in time). Unfortunately, no other 
management decisions are observed. Our current data set covers DHI herds 
served by one dairy records processing center in the state of Wisconsin from 
June 2011 to January 2015, which is representative of about 40 percent of 
Wisconsin dairy herds. At the lactation level, there about 1 million lactation 
records for approximately 277,000 dairy cows on 1,500 dairy farms.

Because of the lack of management decisions observed in DHI data, the 
HMM includes in X a number of fixed effects to attempt to control for the 
confounding impact of management on genetics. In this model, we control 

2. Note that this is in contrast to HMM, which would assume a normal distribution for such 
an effect and center it at zero. We gain flexibility with the distribution of the coefficient only 
because we specify exactly what determines the distribution, which is the unobserved variation 
in input demand.
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for lactation length, lactation number, and proportion of lactation milked 
three times a day in our specification. This is also a “cohort” effect, which 
is an interaction between herd and test month, which is a herd-specific time 
trend. There are also biological factors such as birth year, calving month, 
and breed that are included as fixed effects. In addition to these controls, we 
also include prices such as the milk price, the ration cost, and the price of 
replacement heifers. In our main specification, we use only herd fixed effects 
but also estimate the model with herd-by-time effects as a robustness check 
when looking at relevant distributions.

Every cow that shows up in DHI data has an ID that connects back 
to a sire and associated evaluation available from the CDCB. The CDCB 
updates evaluations three times a year, and these PTA values are the ones 
that will appear to the farmer when choosing genetics. Sire evaluations are 
publicly available on the CDCB’s website and are reported by AI companies 
when selling sires. These evaluations are updated four times a year. Using 
the sire IDs in our data set, we recovered all available records of these sires 
throughout time and matched them to cow records. Thus for each cow in 
our data, we know the PTA value of its parent sire at the time the choice of 
sire was made. The “time they were chosen” is calculated as 10 months prior 
to the cow’s birth date to account for the gestation period of a dairy cow. 
Our data set contains more than 7,000 unique dairy sires matched to our  
1 million lactation records.

We use the folowing prive covariates in our model. For ouput and input 
price, we use “income over feed cost,” a relationship between milk price and 
ration cost determined by the 2006 farm bill. We also include the price of 
16 percent dairy ration as an additional proxy for feed cost. Finally, we 
include the cost of replacement, which we calculate as the beef price per 
pound times 1,400, the typical weight of a dairy cow, minus the cost of a 
replacement heifer.

In addition to issues discussed thus far, the analysis of dairy cow lacta-
tion records is complicated by survival bias for cows on their second lacta-
tion onward. Managers may remove cows from their herd if  they do not 
meet some threshold of production during the first lactation. This selection 
issue is discussed in detail in Henderson (1975), and often lactation records 
of cows past lactation one are not used in sire evaluations for this reason. 
Keeping this in mind, we implement practices commonly followed in dairy 

Table 2.1 Records description

Herds 1,459
Sires 7,628
Dairy cows 277,695
Number of lactations 424,910

 Lactation records  1,065,308  
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science literature when analyzing lactation data. We do not consider cows 
that are lactation six or higher (about .1 percent of the data), and we analyze 
“primiparous” (first lactation) cows separately from “multiparous” cows. 
Primiparous cows should not be subject to survival bias, while multiparous 
cows are a subset of the first group that was not culled. It should be the 
case that multiparous cows are more subject to the management bias we 
discuss, and we analyze this group separately to see how our bias correction 
works differently in this subset. If  bias is severe in multiparous cows, this 
suggests an interaction between the behavior affecting genetic selection and 
the behavior affecting culling decisions.

Using our matched data, we graph the kernel densities of  PTA values 
for butterfat and protein chosen in this sample with dotted lines indicating 
their average. Recall that the HMM used to produce PTA measures fixes the 
distribution to be normal with a mean of zero for the relevant population. 
The densities are not centered at zero and are not symmetric; both densities 
have very long left tails, which shift averages to the left.

This does not give any indication of at what level the selection is occurring, 
however. For example, do farmers simply choose the same PTA value for all 
their animals in a month? At what level is there variation in the chosen traits? 
A quick calculation of within-group sum of squares can shed light on how 
variable each selected trait is within a given herd versus between herds. For 
example, if  a farmer simply chooses the same trait value for all his or her 
cows, then the sum of squares within herds should be zero. The farmer may 
choose the same trait in all time periods or, within a certain month, choose 
the same value for all cows. The difference between herd-month and herd 
essentially approximates the importance of  time-variant factors, such as 
prices and other economic factors. We calculate the ratio between the within 

Table 2.2 Covariate description

   Mean  SD  

Continuous variables   
PTA fat 28.79 27.12 
PTA protein 21.46 20.48 
Proportion milked 3× 0.58 0.49 
Lactation length 310.44 23.48 
Herd size 157.35 232.99
Binary variables (%)   

Lactation number   
1st 45.73  
2nd 28.71  
3rd 15.35  
4th 7.34  

 5th  2.87    
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sum of squares for these two groups (herd-adoption month and herd) and 
the total sum of squares.3

The proportion of  the sum of squares total explained by within-herd 
variation in choices of both traits is quite large: about 80 percent for herd-
adoption month and around 95 percent for herd. This is evidence that the 
largest amount of variation in trait choices is within a herd and not between 
herds, or a large variation at the cow level. This is not consistent with a model 
where heterogeneity in selection behavior is driven at the herd level. Given 
this indicative evidence, we proceed to our empirical model to explore the 
impact of this heterogeneity in selection on the average return to high-yield 
genetics.

2.5  Results

We study the traits protein and butterfat, which are the components of 
milk that are most important to profitability for dairy farmers in Wisconsin. 
The PTA index is in units of pounds of fat and protein and represents the 

3. Calculated as g=1
G

i=1
I (yig yg)2 / g=1

G
i=1
I (yig y)2, where G is either herd groups or herd 

adoption month group.

Fig. 2.1 Distributions of PTAs in the data

Table 2.3 Proportion of SST explained

   PTA fat  PTA protein  

Herd 0.954920 0.955163 
 Herd by time 0.811062  0.797823  
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expected increase in yield of a dairy cow using the given sire relative to a 
base sire (whose PTA is zero). Specifically, they are predictions of a statistical 
model, the HMM, which are interpreted as the increase in fat or protein for 
the specific sire that is chosen. Since the outcome yijt is measured in the same 
units as PTA, if   = 1, then increases in sire ability correspond one-to-one 
with increases in the offspring’s ability.

For each trait, we estimate several different specifications to examine how 
the coefficient on z changes with different corrections. We estimate ordinary 
least squares (OLS), OLS with herd fixed effects, two-stage least squares, 
two-stage least squares with herd fixed effects, and correlated random coef-
ficients (i.e., including ˆ ijt and ˆ ijt × zij

 as regressors in a fixed effects regres-
sion). If  heterogeneity is only at the herd level, then according to Wooldridge 
(2005), herd fixed effects alone should identify the average treatment effect. 
Including the control function terms (ˆ ijt and ˆ ijt × zij

) in the fixed effects 
model identifies the heterogeneity within herds specifically, so the difference 
between these specifications provides evidence regarding the importance of 
cow heterogeneity in determining the average effect.

Finally, noting that the marginal benefit of a trait is given by

 ˆ ijt = + ˆ ˆ ijt,

we can graph the resulting distribution to examine the variability of returns 
across the entire sample. In each specification, we analyze three samples 
based on the lactation year: all lactations, first lactations, and later lacta-
tions. The first-lactation cows are studied separately because they are not 
subject to survival bias, as later-lactation cows possibly are. Estimates of the 
first stage of the model from which the input demand residual is calculated 
are presented in appendix B. Standard errors are calculated clustered at the 
herd level and cluster bootstrapped for the CRC model.

2.5.1  Fat

For both OLS and fixed effects, the average return to increasing the but-
terfat of a sire is positive and different than 0. It is around 0.6, meaning a 
one-unit increase in a pound of PTA causes a 0.6-pound increase in off-
spring. The correction, however, attenuates the effect toward 0 by a large 
amount. When using instrumental variables and a constant coefficient on 
zij, the coefficient is near 0, implying that the correction takes away most of 
the productivity gain that would otherwise be (mis)attributed to the choice 
of PTA. The average effect identified in the CRC model is higher, about 0.14, 
with a positive and significant ρ (meaning there was significant selection bias 
in the OLS specification). The CRC specification also tells us that cows with 
a higher than predicted amount of the trait have a higher marginal return to 
the trait—that is, ψ > 0. At all levels, we reject the hypothesis that ρ = ψ = 0, 
which indicates that the model with the correction is statistically different 
than the model without it. This suggests that the instrument was necessary 
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to correct the estimates for endogeneity. These results imply that the average 
effect of investing in high-fat genetics is reduced by 75 percent after taking 
into account confounding factors. More than half  of the return to PTA fat 
is explained by unobserved confounding variables.

Table 2.5 shows a similar pattern to the whole sample and further indicates 
large differences in first- and later-lactation cows for average returns. There 
is strong evidence of selection behavior that affects the returns to genetics, as 
the average return for first-lactation cows is half  that of later-lactation cows. 
If  this difference is generated by culling, it indicates that farmers cull cows in 
their first lactation that have low marginal return to the high-yield genetics.

2.5.2  Protein

Similar to fat, the average returns to protein are much lower when account-
ing for confounding factors. Using simple OLS, the return to protein is 0.427 
and indistinguishable from 0 when using instrumental variables. Using the 
CRC model, the effect is different than 0 but is less than half  of the OLS 

Table 2.4 All lactations

OLS FE IV IV + FE CRC + FE
  (1)  (2)  (3)  (4)  (5)

PTA fat 0.604*** 0.544*** 0.0325** 0.0355*** 0.149*** 
(0.0321) (0.0134) (0.00723) (0.00434) (0.0083) 

ˆ      0.563*** 
    (0.0236) 

ˆ  × PTA fat     0.0066*** 

N 1,065,308 1,065,308 1,065,308 1,065,308 1,065,308
Adj. R2  0.351  0.562  0.345  0.557  0.564 

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table 2.5 Across lactation cows

All
First 

lactation
Later 

lactation
   (1)  (2)  (3)  

PTA fat 0.14933*** 0.10593*** 0.19799*** 
(0.00827) (0.00829) (0.01303) 

ˆ 0.56271*** 0.53914*** 0.58808*** 
(0.02364) (0.02447) (0.03091) 

ˆ  × PTA fat 0.00662*** 0.00602*** 0.00724*** 
(0.00037) (0.00042) (0.00044) 

N 1,065,308 511,446 553,859 
 Adj. R2  0.564  0.537  0.514  

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
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coefficient when controlling for confounding factors: the estimate changes 
from 0.43 to 0.18. The direction of ψ suggests positive assortative match-
ing for the adoption of high-protein genetics, just as for high-fat genetics. 
When looking at different lactations, there is less evidence of culling based 
on returns to protein. There are slightly lower returns for first-lactation cows 
than later-lactation cows, but it is a much smaller difference compared to 
the differences for fat.

2.5.3  Distributions

Here we estimate the resulting distributions from the CRC specification, 
ˆ ijt = + ˆ ˆ ijt . Figure 2.2 shows the distribution of returns across all lacta-
tions for fat and protein. Figure 2.3 shows the distributions of both traits 
across different lactations and across different levels of fixed effects. In addi-
tion to using herd fixed effects, we also include a combination of three fixed 
effects for herd, test month, and calving month. The product of these three 
indicator variables is typically referred to as a “contemporary group effect” 

Table 2.6 All lactations

OLS FE IV IV + FE CRC + FE
  (1)  (2)  (3)  (4)  (5)

PTA protein 0.427*** 0.358*** 0.00883 0.0165*** 0.21724 *** 
(0.0343) (0.0109) (0.00603) (0.00381) (0.011) 

ˆ ijt     0.25252*** 
    (0.0102) 

ˆ ijt × PTA protein     0.00983*** 

N 1,065,308 1,065,308 1,065,308 1,065,308 1,065,308 
Adj. R2  0.451  0.669  0.448  0.667  0.671 

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table 2.7 Across lactation cows

All
First 

lactation
Later 

lactation
   (1)  (2)  (3)  

PTA protein 0.21724*** 0.19005*** 0.23834*** 
(0.011) (0.01104) (0.0134) 

ˆ 0.25252*** 0.2472*** 0.26652*** 
(0.02248) (0.02271) (0.02875) 

ˆ  × PTA protein 0.00983*** 0.00997*** 0.00972*** 
(0.00041) (0.00042) (0.0005) 

N 1,065,308 511,446 553,859 
 Adj. R2  0.671  0.632  0.622  

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.



Fig. 2.2 Distributions of returns

Fig. 2.3 Fat and protein distributions
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in a genetic evaluation model. Table 2.8 shows the means and standard 
deviations of all of the distributions.

While different in their average effect, both traits have about the same 
standard deviation. For fat, a part of the distribution actually has a neg-
ative coefficient for adoption. For that farm or animal, the returns from 
adopting the technology may in fact be negative because of a combination 
of management environment and unobserved animal-level factors. In this 
case, however, it is hard to justify why increasing a trait in one parent would 
actually decrease that same trait in the offspring. The reason for this may be 
that high-fat or high-protein genetics are correlated with another trait that 
may negatively affect milk production in certain environments. We made 

Fig. 2.3 (cont.)
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the assumption that traits could be chosen independent of  one another, 
but in reality, traits have genetic correlations. For example, high milk yield 
and health are negatively correlated, so increasing production traits could 
negatively impact health, causing a decrease in phenotypic yield. A more 
advanced model of adoption would need to find a way to model their adop-
tion together and explicitly include these correlations as part of the choice 
problem.

Figure 2.3 shows the differences in returns across lactations and across 
different fixed effects specifications. The distributions across lactations sup-
port the results in tables 2.5 and 2.7. The goal of using different fixed effects 
specifications was to look at the effects of parsing out herd-level unobserved 
factors vj versus animal-level unobserved factors uij from the distribution 
ˆ ij. Without any fixed effects, the effect sizes are 0.17 and 0.25 for fat and 
protein, respectively. After netting out time-invariant herd effects, the effect 
sizes drop to 0.15 and 0.218. Finally, when netting out all herd-level varia-
tion using herd-by-time effects, the effect sizes drop to 0.132 and 0.187. The 
resulting distributions are entirely generated by variation in input demand 
at the animal level, meaning dairy farm managers observe animal-level 
returns that they use to choose genetics. These results imply that, on aver-
age, these returns make up 77 percent and 75 percent of the variable returns 
to investment in high-yield genetics. A sizable portion of the selection pro-
cess, therefore, appears to happen at the level of animals rather than at the 
level of farms.

2.6  Discussion and Conclusion

We examine the effect of economic selection behavior on the returns to the 
adoption of genetic technology for dairy farms in Wisconsin. Previous lit-
erature has attributed a large amount of productivity growth on dairy farms 
to improvements in genetics without considering the possibility that traits 
are selected into environments because of unobserved (to the researcher) 

Table 2.8 Distributions of marginal returns

Fat Protein

  Mean  Std. dev  Mean  Std. dev

All lactations 0.150 0.151 0.218 0.164 
First lactations 0.106 0.133 0.191 0.161 
Later lactations 0.199 0.168 0.239 0.166 
No fixed effects 0.170 0.185 0.249 0.197 
Herd fixed effects 0.150 0.151 0.218 0.164 
Herd-by-time fixed effects 0.132  0.146  0.187  0.158 
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farm- or animal-specific returns to a given trait. Using the theoretical frame-
work of the Roy model, we argue that farm- and animal-level heterogene-
ity may bias estimates in the returns to genetic traits such as butterfat and 
protein through the selection process. We use herd testing association data 
on dairy cows and the evaluations of their sires at the time they were chosen 
to estimate a CRC model. Our approach permits us to examine the effects 
of correcting for bias when estimating the impact of genetic improvement 
on productivity, the effect of selection behavior as a source of heterogene-
ity in returns to traits, and the relative importance of cow-level heterogeneity 
versus farm-level heterogeneity.

We find that correcting for selection bias lowers the estimated contribu-
tion of genetic improvement to productivity differences across cows by an 
average of 50 percent. We estimate average returns to adopting genetics with 
1 more pound of fat or protein to be about 0.6 pounds and 0.4 pounds before 
the correction and 0.15 pounds and 0.2 pounds after correction for selection 
bias. Our model also indicates positive assortative matching, meaning farms 
with the highest return to adopting a given set of traits are the ones that 
adopt, giving credence to the upward bias in the coefficients. We also find 
that first-lactation cows have the lowest average return to high-yield genet-
ics, indicating that farmers tend to cull cows with lower-than-expected ex 
post marginal return to the traits. Analyzing the distributions of returns, we 
find that up to 75 percent of the heterogeneity in returns generated from the 
input demand residual were at the animal level instead of the farm level. This 
implies that the factors confounding the returns to genetics are also at the 
animal level; cows with different trait investments are managed differently 
in ways that are not controlled for using farm-level fixed effects.

This study has several limitations that should be addressed in future work. 
First, we model trait adoption as though each trait could be chosen inde-
pendent of other traits. This may not be a reasonable assumption given the 
extent to which traits are correlated with one another. Accounting for this 
possibility would require using a system of equations with cross-equation 
restrictions limiting trait-selection possibilities to those that are feasible 
given relevant empirical context. Such a model might be able to explain why 
there are negative returns to high-yield genetics for some animals and farms. 
Second, we treat trait investment as continuous even though farms choose 
sires discretely. This assumes that the trait values are dense enough to treat 
the variable as continuous, whereas the adoption decision is discrete over a 
choice set of individual bulls. One way to model this as a discrete problem 
while also taking into account correlations between traits would be to use 
a lower dimensionality representation of sires determined from the data. 
Unsupervised machine learning methods such as K-means clustering could 
be used to characterize an implied grouping of sires that have certain traits 
in common. The problem of choosing traits would then become one of 
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choosing a basket of traits represented by a certain grouping of bulls. The 
matching decision itself  also needs further elaboration. In future work, we 
hope to turn our attention to data on breeding decisions where we have addi-
tional data that may permit a more detailed investigation of the selection 
decision. We also aim to develop a more sophisticated modeling approach 
that will take into account that farmers select a portfolio of traits rather 
than choosing one at a time.

Despite these shortcomings, our results point to new possibilities for 
studying technology adoption and suggest the need for a reinterpretation 
of and further research on the expansive literature that examines the contri-
bution of genetic progress to productivity growth in the dairy sector. For the 
economics field tackling technology adoption, animal-level heterogeneity 
is important and should not be overlooked. Appendix B contains the first-
stage results of the model, which show that cows with higher trait investment 
are milked more frequently and survive to more lactations. If  such behavior 
happens at the animal level, it is important to take this into account when 
thinking of sources of  farm productivity that farmers may act on in the 
context of  the Roy model. Previous studies of  farm productivity usually 
identify “unobserved” returns at the farm level, and for this reason, many 
papers studying dairy farms or animal operations sum production to the 
herd level. This assumption also suggests a reevaluation of extension pro-
gramming developed to advise farmers about herd-level management. Our 
work shows that a large amount of the heterogeneity in returns is driven by 
animal-level variation, meaning there are ample opportunities to increase 
productivity by emphasizing management on this level. Agricultural data 
are becoming more granular, and there is no doubt there will be increasing 
opportunities for economics research to take selection of genetics by farm-
ers into account. We consider only animal agriculture, where every animal 
must be bred, but the approach we develop here may also be used at some 
scale in crop agriculture.

Overall, we find that selection behavior biases estimates of the effect that 
genetic improvement alone has on productivity growth. An important com-
ponent of productivity change depends on farmers choosing genetics that 
work particularly well in conditions that are idiosyncratic to their individual 
farming operations. This changes the narrative regarding the source of farm 
productivity in the dairy industry from one where science alone is the source 
of gains from new technology to one where growth is the result of comple-
mentary inputs provided by farmers and scientists. Indeed, the success of 
the dairy industry thus far depends on collaboration among farmers and 
scientists via institutions often taken for granted, such as the DHI program, 
land grant universities, and a variety of industry collaborators (represented 
collectively by the CDCB). The interplay among these organizations and 
the remarkable record of  success (as measured by productivity growth) 
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they have achieved make the dairy industry a unique model of research and 
innovation in agriculture that merits further analysis and critique in the 
economics field.

Appendix A

Regression Controls

To select controls for the animal equation, we draw on the animal science 
literature to inform controls we include in the model.

The vector Xijt contains the following variables:

• Economic Controls
- cost of 16 percent dairy ration
- income over feed cost
- replacement cost (beef price $/lb × 1,400 − cost of replacement heifer)
- time trend

• Biological Controls
- calving month (indicator)
- test month (indicator)
- birth year (indicator)
- lactation number (indicator)
- Holstein (indicator)

• Management Controls
- proportion of lactation milked three times a day
- herd size (deviations from average)
- lactation length (days in milk of record)

Appendix B

First-Stage Estimates

The first-stage equation for our model uses past variation in a sire’s evalua-
tion, which occurs at the national level as a source of exogenous variation:

zij = 0 j + zij + 0Xijt + ijt.

While this prediction is time invariant (the selection occurs only once), the 
residual ηijt will still be time variant because of the term Xijt. Due to the pres-
ence of Xijt, the first stage essentially treats the same cow at different points 
in time as entirely separate cows who happen to have the same values of zij. 
This means that when we examine the PTA investment for one cow at two 
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different lactations, it essentially treats these as two adoption decisions; by 
deciding to let the animal keep producing, the manager implicitly adopts the 
genetics again. This is not necessarily problematic, but we must estimate the 
model on these surviving animals separately to understand how the culling 
decision interacts with the adoption of genetics.

One implication of this approach is that the first stage will help us under-
stand the trait investments for animals that survive. Table 2.9 shows the 
results of the first stage and the coefficients on animal-level variables. Both 
OLS and fixed effects are shown to get a sense of what level of variation is 
important. For example, both lactation length and lactation number are 
significant in predicting z, which implies that cows that have a larger trait 
investment are milked longer and are more likely to not be culled in their 
first year. Milking the cow three times per day is significant in the OLS 
specification but not in the fixed effects, implying that farms that choose 
higher investments in production traits also milk more intensively at the herd 
level. Holstein cows are also most likely to have the highest investment in 
production traits, which is to be expected given their comparative advantage 
in high-volume production.

Differences across production traits are mostly seen in the culling deci-

Table 2.9 First stage regression

PTA fat PTA protein

  OLS  FE  OLS  FE

Δzij 0.499*** 0.500*** 0.495*** 0.496*** 
(0.000648) (0.000613) (0.000550) (0.000514) 

Lactation no. = 2 1.589*** 0.368* 1.793*** 0.954*** 
(0.265) (0.207) (0.193) (0.157) 

Lactation no. = 3 2.220*** −0.195 2.789*** 1.132*** 
(0.519) (0.409) (0.376) (0.310) 

Lactation no. = 4 3.164*** −0.393 3.675*** 1.254*** 
(0.766) (0.594) (0.569) (0.461) 

Lactation no. = 5 3.839*** −0.787 4.718*** 1.610*** 
(0.999) (0.786) (0.746) (0.605) 

Proportion milked 3× 1.528*** −0.310 1.210*** −0.0692 
(0.481) (0.687) (0.351) (0.382) 

Herd size 0.0000154 −0.000717 −0.0000608 −0.000657 
(0.000258) (0.000572) (0.000198) (0.000519) 

Lactation length (days) 0.00640*** 0.00561*** 0.00559*** 0.00522*** 
(0.00108) (0.000913) (0.000781) (0.000678) 

Holstein 1.475 3.191*** 3.260*** 2.707*** 
(1.475) (0.561) (0.791) (0.656) 

Observations 1,641,022 1,641,022 1,641,022 1,641,022 
Adjusted R2  0.249  0.303  0.281  0.333 

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
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sion. Without herd fixed effects, cows that are kept past the first lactation 
have higher trait investment for both fat and protein. Once herd fixed effects 
are used, fewer differences are seen across lactations considering only ani-
mal-level variation. For fat, only second-lactation cows have marginally 
more fat investment than first-lactation cows. For protein, all later-lactation 
cows have higher investments in protein (on the order of one pound more). 
One thing that can be learned from these results is that adoption and other 
management decisions are inextricably linked. Specifically, cows that have a 
high PTA investment are more likely to be kept, milked longer, and milked 
more intensively.
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